Контакты
Подписка
МЕНЮ
Контакты
Подписка

Пожарные извещатели. Термины, определения, принцип действия

В рубрику "Охранная и охранно-пожарная сигнализация, периметральные системы" | К списку рубрик  |  К списку авторов  |  К списку публикаций

Пожарные извещателиТермины, определения, принцип действия

В последнее время в технических статьях и рекламных материалах по пожарным извещателям появились новые термины, которые не определены в отечественной нормативной базе. К аналоговым, интерактивным и интеллектуальным извещателям добавились мультикритериальные и мультисенсорные пожарные извещатели. Чем они отличаются друг от друга и какие дополнительные функции имеют?
Игорь Неплохов
Технический директор компании
Tyco Integrated Fire & Security, к.т.н.

В статье предпринимается попытка провести систематизацию различных классов пожарных извещателей, основываясь на терминах и определениях, приведенных в отечественной и зарубежной нормативной базе. Показано, что адресно-аналоговый извещатель может являться комбинированным, мультикритериальным или мультисенсорным в зависимости от режима обработки аналоговых величин контролируемых факторов.

Комбинированные пожарные извещатели по ГОСТ Р 53325

Начнем с простейшего случая - с комбинированных пожарных извещателей, хотя даже здесь есть различные понятия в отечественных и зарубежных нормативах. По ГОСТ Р 53325-2009 п.3.13, "извещатель пожарный комбинированный (ИПК): Автоматический ПИ, реагирующий на два или более физических факторов пожара". Самый распространенный комбинированный пожарный извещатель - это дымовой-тепловой типа ИП 101/212, реагирующий на дым и на тепло. В пыльных зонах вместо низкоэффективных тепловых извещателей в последние годы все чаще стали использоваться значительно более эффективные газовые СО-тепловые комбинированные извещатели типа ИП 101/435. Про логику работы в определении ГОСТ Р 53325-2009 ничего не говорится, но, как правило, в отечественных извещателях подразумевается простейшая логика "ИЛИ". В новой версии ГОСТ Р 53325 это прямо указано в определении комбинированного извещателя: "извещатель пожарный комбинированный; ИПК: Автоматический ИП, реагирующий на два или более физических факторов пожара, с алгоритмом работы по логической схеме "ИЛИ". Соответственно, такие извещатели должны отвечать минимум требованиям по каждому типу извещателей в отдельности, то есть в наших примерах - по дымовому извещателю и по тепловому или по газовому СО и по тепловому.

Таким образом, отечественный комбинированный пожарный извещатель по ГОСТ Р 53325 - это, как правило, два разнотипных извещателя, собранных в одном корпусе с общим выходом и индикацией. Такой комбинированный извещатель по эффективности является эквивалентом двух соответствующих одноканальных пожарных извещателей. При этом стоимость комбинированного извещателя соответственно меньше по сравнению с суммой одноканальных извещателей. Однако логика "ИЛИ" определяет суммирование вероятностей ложных тревог по каждому каналу, что является явным недостатком комбинированных пожарных извещателей.

Мультисенсорные и мультикритериальные пожарные извещатели в ГОСТ Р 53325 не определены. Кроме того, необходимо отметить, что введение в определение комбинированного пожарного извещателя конкретной логики работы оставляет неопределенными широкий класс современных и значительно более эффективных по сравнению с примитивными извещателями с логикой "ИЛИ", которые используют корреляционную обработку различных факторов пожара, элементы теории распознавания образов, функции максимального правдоподобия и т.д.

Комбинированные пожарные детекторы по NFPA 72-2013

Определение в американском стандарте NFPA 72 значительно расширяет понятие комбинированного извещателя: "3.3.66.4* Комбинированный детектор. Устройство либо реагирует более чем на один фактор пожара или используется более одного принципа обнаружения одного из этих факторов. Типичными примерами являются сочетание теплового детектора с детектором дыма или комбинация скорости нарастания и фиксированной температуры в тепловом детекторе. Это устройство прописывается для каждого используемого типа сенсора. (SIG-IDS)". Как видно из приведенного определения, в комбинированном извещателе возможно не только использование контроля различных факторов, но и различные способы обнаружения одного фактора пожара. В определении приведен пример максимально-дифференциального пожарного извещателя, который по ГОСТ 53325 не является комбинированным. К комбинированным пожарным извещателям по NFPA 72 также относятся дымовые извещатели с использованием различных технологий обнаружения дыма, например двухволновые дымовые извещатели с инфракрасным и синим светодиодами или с различными углами оптопар.

С другой стороны, можно отметить, что в определении комбинированного извещателя по NFPA 72 отсутствуют ограничения по алгоритмам обработки информации, полученной по различным каналам пожарного извещателя. Таким образом, к комбинированным извещателям по NFPA 72 относятся все извещатели с двумя и более разнотипными сенсорами для контроля различных факторов и все извещатели с контролем одного фактора пожара различными технологиями независимо от алгоритмов обработки информации - от примитивной логики "ИЛИ" до сложнейших алгоритмов с использованием банка данных по массе различных очагов и помеховых воздействий.

Мультикритериальные пожарные детекторы по NFPA 72-2013

Определение мультикритериального детектора по NFPA 72 включает в себя требование о наличии сложного алгоритма обработки информации в сравнении с простейшей логикой "ИЛИ" и, кроме того, выделяется основной обнаруживаемый фактор: "3.3.66.12 * Мультикритериальный детектор - устройство, которое содержит несколько сенсоров, которые реагируют на различные физические факторы, такие как тепло, дым и выделяющиеся от очага газы, или используется более одного сенсора, чтобы обнаружить один и тот же фактор. Этот детектор способен формировать только один сигнал тревоги от сенсоров, используемых либо самостоятельно, либо в комбинации. Выходной сигнал детектора - результат математической оценки, определяемый, когда сигнал тревоги является обоснованным. Оценка может быть выполнена либо в детекторе, либо в панели. Этот детектор приписывается к одному типу, который определяет основную функцию детектора. (SIG-IDS)".

Примером мультикритериального дымового детектора является дымовой детектор с тепловым сенсором (рис. 1) с обработкой информации в режиме НРО - High Performance Optical - высокоэффективный оптический. Тепловой канал в этом случае не используется самостоятельно, информация о температуре используется только для расширения возможностей дымового оптико-электронного детектора. Чувствительность дымового канала изменяется в зависимости от температуры окружающей среды. Испытания дымовых оптико-электронных извещателей по очагам различных типов показывают снижение их эффективности при обнаружении открытых очагов по сравнению с радиоизотопными дымовыми извещателями. Это существенный недостаток классических оптических дымовых извещателей. Очевидно, обнаружение открытых очагов ввиду быстрого распространения пожара должно быть максимально быстрым. Для устранения этого недостатка в режиме НРО производится повышение чувствительности по дыму при обнаружении повышения температуры окружающей среды. Данный алгоритм обработки информации позволяет обнаруживать открытые очаги с эффективностью радиоизотопного извещателя при обеспечении высокой достоверности тревоги.


Другой пример мультикритериального извещателя - газовый извещатель угарного газа СО с тепловым сенсором (рис. 2) и с обработкой информации в режиме Compensated СО - компенсированный СО, в котором чувствительность по газовому каналу СО зависит от изменения температуры окружающей среды. Известно, что газовые извещатели СО хорошо обнаруживают тлеющие очаги, поскольку тление сопровождается образованием значительных концентраций угарного газа, опасных для здоровья и жизни человека. Скрытое тление при ограничении доступа кислорода извещатели СО обнаруживают значительно раньше дымовых извещателей.


Однако они не реагируют на открытые очаги, что является их существенным недостатком, который значительно ограничивает область применения газовых СО-извещателей. Для устранения этого недостатка в режиме Compensated СО производится оценка результатов измерения концентрации СО с учетом изменения температуры окружающей среды. Данный мультикритериальный газовый СО-детектор с тепловым сенсором позволяет обнаруживать открытые очаги с эффективностью дымового извещателя при отсутствии ложных срабатываний от пыли, пара, аэрозолей и т.д.

Адресно-аналоговые пожарные извещатели по ГОСТ Р 53325

В американском стандарте NFPA 72 приведено в 50 раз больше терминов и определений, чем в ГОСТ Р 53325, но определение адресно-аналогового пожарного извещателя есть только в ГОСТ Р 53325: "3.6 извещатель пожарный аналоговый: Автоматический ПИ, обеспечивающий передачу на приемно-контрольный прибор информации о текущем значении контролируемого фактора пожара". Для упрощения обработки результатов измерений в панели обычно формируются линейные шкалы контролируемого фактора в дискретах. На дисплее панели или тестера-программатора текущие значения аналоговых величин отображаются в стандартных единицах и в дискретах. Например, на рис. 3 показаны отсчеты по дымовому-СО-тепловому адресно-аналоговому извещателю в дежурном режиме: температура 24 °С (078 дискретов), удельная оптическая плотность 0 %/м (012 дискретов), концентрация угарного газа СО 0 ррт (024 дискрета), компенсация пыли в дымовой камере 2% (013 дискретов).


Адресно-аналоговое построение системы обеспечивает максимально широкие возможности в выборе программ обработки аналоговой информации извещателей при использовании огромных вычислительных возможностей панели. В отличие от комбинированного извещателя с формированием сигнала тревоги в извещателе с жесткой логикой работы, в адресно-аналоговой панели информация от извещателя может обрабатываться в различных режимах в зависимости от условий эксплуатации и вида пожарной нагрузки с возможностью переключения режимов работы в рабочие и нерабочие часы, которые условно называются "День" и "Ночь". Соответственно, адресно-аналоговый извещатель не может быть однозначно определен как мультикритериальный или как комбинированный. Классификация с адресно-аналогового извещателя переносится на режим обработки информации в панели. К примеру, аналоговые величины удельной оптической плотности среды и температуры оптического дымового-теплового извещателя могут обрабатываться в панели в следующих режимах:

  • Режим 1 - только дымовой (чувствительность высокая/нормальная/низкая).
  • Режим 2 - мультикритериальный HP О дымовой (чувствительность высокая/ нормальная/низкая).
  • Режим 3 - комбинированный: дымовой (чувствительность высокая/нормальная/низкая) - тепловой максимальный на 60 °С, класс A2S по EN54-5.
  • Режим 4 - тепловой максимально-дифференциальный, класс A1R.
  • Режим 5 - тепловой максимальный на 60 "С, класс A2S по EN54-5.
  • Режим 6 - комбинированный: мультикритериальный НРО дымовой (высокая/нормальная/низкая) - тепловой максимальный на 60 °С, класс A2S по EN54-5.

Можно обратить внимание, что в режиме 6 информация об изменении температуры используется двояко: при формировании мультикритериального режима обработки дымового канала и отдельно по стандартному алгоритму теплового извещателя класса A2S. Таким образом, в режиме 6 реализуется одновременно и комбинированный, и мультикритериальный извещатель.

Чем отличается класс тепловых извещателей A2S по европейскому стандарту EN54-5 от класса тепловых извещателей А2 по ГОСТ Р 53325? Этот вопрос касается различий методов борьбы с ложными срабатываниями. Тепловые детекторы с индексом S являются прямой противоположностью дифференциальных тепловых извещателей с индексом R. Если дифференциальные тепловые извещатели должны активизироваться при достаточно быстром нарастании температуры до достижения их максимального порога, то детекторы с индексом S не должны срабатывать при резких скачках температуры, пока ее значение не достигает порога, что подтверждается соответствующими испытаниями. Например, детекторы класса A2S сначала выдерживают при температуре 5 °С, а затем помещают в воздушный поток с температурой 50 °С. То есть воздействие на детектор класса A2S скачка температуры величиной 45 °С не должно вызывать ложного срабатывания. В адресно-аналоговой системе данный режим реализуется программно, в режиме 5 тепловой максимальный на 60 °С, класс A2S по EN54-5 панель не реагирует на любые скачки температуры, пока ее значение не достигнет величины 60 °С. Такой режим рекомендуется использовать в зонах, где возможны значительные перепады температуры в нормальных условиях, таких как котельные, кухни и тому подобное.

Кроме того, один адресно-аналоговый дымовой-тепловой извещатель может быть сконфигурирован в виде двух виртуальных извещателей с двумя адресами. При этом по одному адресу можно реализовать извещатель с режимом 1 или 2, а по второму адресу - извещатель с режимом 4 или 5. То есть по одному адресу будет смоделирован дымовой извещатель или мультикритериальный дымовой извещатель НРО, а по другому адресу - тепловой максимально-дифференциальный извещатель класса A1R или тепловой максимальный на 60 °С класса A2S. Аналоговые величины концентрации угарного газа СО и температуры адресно-аналогового СО-теплового извещателя могут обрабатываться в панели в следующих режимах:

  • Режим 1 - газовый СО (чувствительность высокая/нормальная/низкая).
  • Режим 2 - тепловой максимально-дифференциальный, класс Al R.
  • Режим 3 - мультикритериальный газовый ССО (чувствительность высокая/нормальная/низкая).
  • Режим 4 - тепловой максимальный на 60 "С, класс A2S по EN54-5.
  • Режим 5 - комбинированный мультикритериальный газовый ССО (чувствительность высокая/нормальная/низкая) - тепловой максимально-дифференциальный, класс A1R.

Один адресно-аналоговый газовый СО-тепловой извещатель также может рассматриваться как два отдельных извещателя с двумя различными адресами. По одному адресу можно реализовать газовый СО либо Compensated СО с выбором уровня чувствительности (режим 1 или 3), а по другому - тепловой максимально-дифференциальный извещатель класса A1R либо тепловой максимальный класса A2S (режим 2 и 4). То есть по одному адресу будет сконфигурирован адресно-аналоговый газовый СО извещатель или высокоэффективный газовый извещатель с алгоритмом Compensated СО, а по другому адресу - тепловой максимально-дифференциальный извещатель класса A1R или тепловой максимальный на 60 °С класса A2S.

Мультисенсорные пожарные детекторы по NFPA 72-2013

Определение мультисенсорного детектора по NFPA 72 также включает в себя требование о наличии сложного алгоритма обработки информации, но тип извещателя определяется как у комбинированного извещателя по всем видам контролируемых факторов: "3.3.66.13* Мультисенсорный детектор - это устройство, которое содержит несколько сенсоров, которые раздельно реагируют на физические факторы, такие как тепло, дым или выделяющиеся от очага газы, или использует более одного сенсора для обнаружения одного и того же фактора. Устройство способно генерировать сигналы тревоги от любого сенсора, сконструированного раздельно или в комбинации. Производится математическая оценка выходных сигналов сенсоров для определения, когда сигнал тревоги является обоснованным. Оценка может быть выполнена либо в детекторе или в панели. Этот детектор приписывается к каждому типу для каждого используемого типа сенсора (SIG-IDS)".

Примером мультисенсорного детектора является дымовой-СО-тепловой детектор с экспертными алгоритмами обработки выходных сигналов сенсоров в режимах Universal Multi-Criteria Sensor - универсальный мультисенсорный и Resilient Mode - высокодостоверный. Раннее обнаружение различных очагов пожара при минимуме ложных тревог в тяжелых условиях эксплуатации - ценное качество пожарного детектора, компенсирующее его высокую стоимость при эксплуатации на многих объектах, где ложная тревога связана со значительными прямыми финансовыми убытками или с косвенными через имиджевые потери, да и на любом объекте частые ложные тревоги исключают адекватную реакцию при пожаре. Набор сенсоров дымовой, СО и тепловой (рис. 4) является универсальным для защиты различных объектов при отсутствии ложных срабатываний даже в сложных условиях при наличии помеховых воздействий. Выявление сочетания сравнительно небольших концентраций дыма с некоторым повышением температуры окружающей среды обеспечивают высокую достоверность обнаружения открытых очагов на ранней стадии. Наличие газового канала СО позволяет повысить эффективность обнаружения тлеющих очагов и обеспечить защиту от ложных тревог при воздействии пара, аэрозолей, театрального дыма, пыли. Повышение оптической среды при отсутствии угарного газа СО позволяет точно классифицировать помеховые воздействия, не связанные с пожароопасной обстановкой и т.д.


К мультисенсорному детектору предъявляются требования высокой точности измерения величин контролируемых факторов в реальном масштабе времени. Для обеспечения этого требования дымовая камера должна иметь хорошую вентилируемость при малых скоростях воздушных потоков. Любая дымовая камера имеет какое-то аэродинамическое сопротивление и для исключения обтекания воздушными потоками пожарного извещателя корпус извещателя имеет вертикальные пластинки, которые направляют воздушные массы в дымовую камеру, к сенсору СО и к термистору (рис. 5). 


Кроме того, термистор должен быть практически безынерционным, то есть иметь минимальную массу для точного измерения изменения температуры. Без выполнения этих требований обеспечить раннее обнаружение загораний невозможно, поскольку на начальных этапах развития пожароопасные ситуации сопровождаются незначительными выделениями тепла и слабыми воздушными потоками. Пожарные извещатели обтекаемой формы с малой площадью дымозахода и с тепловыми сенсорами значительной массы длительное время не обнаруживают ни наличие дыма, ни повышение температуры, причем недостатки конструкции не могут быть компенсированы схемотехническими решениями.

Адресно-аналоговое построение позволяет использовать широкий набор режимов обработки аналоговых величин контролируемых факторов вплоть до формирования на базе одного извещателя трех виртуальных разнотипных извещателей с различными адресами:

  • Режим 0 - универсальный мультисенсорный (Universal Multi-Criteria Sensor).
  • Режим 1 - высокодостоверный мультисенсорный (Resilient Mode).
  • Режим 2 - тепловой максимально-дифференциальный, класс Al R.
  • Режим 3 - мультикритериальный HP О дымовой.
  • Режим 4 - мультикритериальный газовый ССО.
  • Режим 5 - токсичный газ СО (по EN 50291).
  • Режим 6 - мониторинг качества воздуха на автостоянке (Car Park Monitoring).

Универсальный мультисенсорный режим (Universal Multi-Criteria Sensor) обеспечивает скорейшее обнаружение широкого спектра пожароопасных ситуаций при обработке информации по всем трем сенсорам. Высокодостоверный мультисенсорный режим (Resilient Mode) обеспечивает высокую устойчивость к помеховым воздействиям и раннее обнаружение различных очагов пожара при минимуме ложных тревог в тяжелых условиях эксплуатации. Режим тепловой A1R - это стандартный режим работы теплового максимально-дифференциального извещателя. В мультикритериальном режиме НРО (High Performance Optical) - высокоэффективном оптическом - используются только дымовой и тепловой каналы, газовый СО не используется. Причем чувствительность по дымовому каналу изменяется в зависимости от температуры окружающей среды, в результате чего открытые очаги обнаруживаются с эффективностью радиоизотопного извещателя при обеспечении высокой достоверности сигналов тревоги. В режиме компенсированный газовый СО (Compensated СО), наоборот, используются только газовый СО и тепловой каналы. Этот режим обеспечивает наилучшее обнаружение тлеющих и открытых очагов в пыльных зонах. Используется расширенная технология обнаружения угарного газа с увеличением чувствительности при повышении температуры. В режиме контроля токсичного газа могут программироваться пороги концентрации угарного газа 30 ррт, 45 ррт, 50 ррт, 90 ррт и 100 ррт (рис. 6). Режим 6 - мониторинг качества воздуха на автостоянке, в этом режиме извещатель представляется в виде двух виртуальных извещателей с различными адресами: один обеспечивает контроль токсичного газа с выбранным порогом, а второй - тепловой извещатель класса A1R.


Кроме того, один адресно-аналоговый дымовой-СО-тепловой извещатель может рассматриваться как три виртуальных извещателя - сплит-устройство (Split Device) с различными режимами и тремя адресами. По адресу А может быть задан режим 0,1, 2, 3, 4 или 5. Если по адресу А определен какой-либо из режимов пожарного извещателя 0, 1, 2, 3 или 4, то по адресам В и С также могут быть выбраны только режимы пожарного извещателя - любые режимы из 0, 1, 2, 3 или 4. Если по адресу А выбран режим 5 (токсичный газ СО), то по адресам В и С могут быть выбраны только режимы 2 и 3, то есть без использования сенсора СО. Это ограничение объясняется тем, что сенсор СО не может быть использован одновременно для контроля токсичного газа и для обнаружения пожара, поскольку в этих режимах используются различные диапазоны измерений концентрации угарного газа СО.

Достоверное обнаружение

Таким образом, мультикритериальные и мультисенсорные алгоритмы обработки информации, которые базируются на результатах экспериментальных исследований, позволяют значительно расширить возможности дымовых и газовых СО-извещателей с тепловыми сенсорами.

Самые широкие возможности по выбору режимов работы имеют адресно-аналоговые извещатели, они могут быть сконфигурированы не только в виде мультикритериальных, мультисенсорных и комбинированных извещателей, но и в виде нескольких виртуальных извещателей с различными адресами и режимами работы.

В качестве универсального извещателя для различных условий эксплуатации и видов пожарной нагрузки с обеспечением раннего достоверного обнаружения пожароопасной обстановки можно использовать 3-канальный адресно-аналоговый пожарный извещатель дымовой-газовый СО-тепловой.

Опубликовано: Каталог "ОПС. Охранная и охранно-пожарная сигнализация. Периметральные системы"-2013
Посещений: 13940

  Автор

Неплохов И. Г.

Неплохов И. Г.

Технический директор компании "Центр-СБ", к.т.н.

Всего статей:  89

В рубрику "Охранная и охранно-пожарная сигнализация, периметральные системы" | К списку рубрик  |  К списку авторов  |  К списку публикаций